Vertex and edge metric dimensions of unicyclic graphs
نویسندگان
چکیده
The vertex (resp. edge) metric dimension of a connected graph G is the size smallest set S?V(G) which distinguishes all pairs vertices edges) in G. In Sedlar and Škrekovski (2021) it was shown that both edge unicyclic always take values from just two explicitly given consecutive integers are derived structure graph. A natural problem arises to determine under what conditions these dimensions each possible values. this paper for we characterize three configurations prove takes greater if only contains at least one configurations. One same dimensions, while other specific them. This enables us establish exact value also when than one.
منابع مشابه
Edge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملComputing the vertex separation of unicyclic graphs
We describe an O(n log n) algorithm for the computation of the vertex separation of unicyclic graphs. The algorithm also computes a linear layout with optimal vertex separation in the same time bound. Pathwidth, node search number and vertex separation are different ways of defining the same notion. Path decompositions and search strategies can be derived from linear layouts. The algorithm appl...
متن کاملOn the vertex separation of unicyclic graphs
In the article “Computing the vertex separation of unicyclic graphs”, Information and Computation 192, pp. 123–161, 2004, Ellis et al. proposed an O(n log n) algorithm for computing both the vertex separation and an optimal layout of a unicyclic graph with n vertices. Using the data structures label and label array, we improve the time complexity of their algorithm to O(n).
متن کاملA note on vertex-edge Wiener indices of graphs
The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...
متن کاملEdge Szeged Index of Unicyclic Graphs
The edge Szeged index of a connected graph G is defined as the sum of products mu(e|G)mv(e|G) over all edges e = uv of G, where mu(e|G) is the number of edges whose distance to vertex u is smaller than the distance to vertex v, and mv(e|G) is the number of edges whose distance to vertex v is smaller than the distance to vertex u. In this paper, we determine the n-vertex unicyclic graphs with th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2022
ISSN: ['1872-6771', '0166-218X']
DOI: https://doi.org/10.1016/j.dam.2022.02.022